
Theoret. Chim. Acta (Berl.) 54, 131-144 (1980) 
THEORETICA CHIMICA ACTA 

�9 by Springer-Verlag 1980 

A Re-Examination of the Justification of Neglect of 
Differential Overlap Approximations in Terms of a Power 
Series Expansion in S 

Graham S. Chandler* 

Chemical Laboratory IV, H.C. Orstedinstitutet, Universitetsparken 5, Kr O, Denmark 

Frederik E. Grader 

The Chemistry School, University of Western Australia, Nedlands, Western Australia, 6009 

Neglect of  differential overlap methods are treated as approximations to calcu- 
lations in a symmetrically orthogonalized basis. The accuracy of this approxi- 
mation is investigated in terms of a power series expansion of the overlap matrix. 
The S-matrix can be transformed into a matrix which will give a convergent 
series, and this series is used in the examination. The only approximation having 
any justification from this point of view is the NDDO method and even this 
neglects certain important three-electron integrals. Corrected expressions for the 
repulsion integral scaling factors introduced by Chandrasekhar et al. are also 
derived. 
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1. Introduction 

Semi-empirical calculations based on the neglect of differential overlap (NDO) 
approximations and explicitly treating only valence electrons have become widely 
used through the ready availability of programs using the complete neglect of 
differential overlap (CNDO) methods or modifications of them. 

These methods derive from the zero differential overlap approximation (ZDO), first 
applied to ~r-electron systems, which can be summarized as follows: 

(~ t~) = a~&c(~ I ~) (1) 
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where 8~r is the Kronecker delta, and 

S.~ = f ,~.(1)~(1) d*l = 3.,,. (2) 

However, core integrals, 

= f ~u(1)~~176176 d~-i n~ (3) 

with 

are not neglected. 

CNDO methods [1] incorporate the ZDO approximations, making adjustments so 
that all integrals are invariant to rotations of axes by having any surviving two- 
electron integrals depend only on the nature of the atoms A and B to which the 
orbitals belong and not on the type of the orbital. CNDO calculations cannot 
adequately differentiate between spin states. The intermediate neglect of differential 
overlap methods (INDO) [2] perform this task better by including one-centre 
integrals with differential overlap, so that 

(FAVB I AAr = 3AB(FAVA ] AACrA) (4) 

is retained. 

The most sophisticated NDO method which has been introduced is neglect of 
diatomic differential overlap (NDDO) [2]. It is invariant to rotations without for- 
cing any equivalences or averaging between integrals. Here, two-electron integrals 
are neglected only if the differential overlap occurs between atomic orbitals on 
different atoms, 

Although several authors have sought a justification of these methods by treating 
them as approximations to a calculation in a symmetrically orthogonalized basis 
[3-5], it has been demonstrated by Gray and Stone that these approaches were not 
valid except for the special case of~-electron calculations [6], because the expansion 
in the overlap matrix S used in these studies can become divergent. 

Using a different approach Roby [7, 8] demonstrated a theoretical foundation for 
NDDO methods. Beginning with a complete basis set on each atom, and using the 
Ruedenberg expansion [9], Roby showed 

[M ~ S] = 0, (6) 

where M ~ has as elements the integrals in the chosen basis over a one-electron 
operator, but with all two-centre integrals being set equal to zero. S is the overlap 
matrix. Further consideration of the one-electron operator matrix elements after 
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transformation to a canonically orthogonalized basis [10] lead Roby to conclude 
that 

~M = M ~ (7) 

Here, ~M is the matrix over the orthogonalized basis. The matrix M ~ is the corre- 
sponding matrix in the non-orthogonal basis with all two-centre elementg set to 
zero and reduced in order to correct for linear dependencies. Equation (7) leads to 
the important corollary that the canonically orthogonalized Coulomb repulsion 
integral matrix can be constructed from the integral array in the non-orthogonal 
basis containing only interactions between one-centre charge distributions, so that 
only 

(~v I ~ )o  = ~ABSoDC~'AVB I ~o~n) (8) 

need be considered. This is the NDDO approximation. A similar result is approxi- 
mately true [8] for a symmetrically orthonormal basis set [10]. 

This work has been critically re-examined by King, Newton and Stanton [11, 12], 
who confirmed (7) but pointed out that M ~ need not necessarily be diagonal as 
assumed earlier. It then follows that Roby's corollary concerning the Coulomb 
repulsion integral matrix can only be correct when the orthogonal basis consists of 
three-dimensional delta functions, hence the practical applications of the work 
would seem to be severely limited. So, while a formal connection has been estab- 
lished between the NDDO assumptions and calculations in an orthogonal basis it 
still has not provided much insight into the practicalities of using a severely 
truncated basis. Even Roby's examination of an approximate theorem in a sym- 
metrically orthogonalized basis does not provide much help, since his exposition 
depends on there being a large enough basis set to give Ruedenberg expansions 
which leave only a small error and yet do not introduce any linear dependencies. 
Though these very innovative investigations opened up new ways of thinking about 
NDO methods, nevertheless the earlier S-1/2 expansion technique is valuable for 
examining practical applications using basis sets which are necessarily small when 
compared with complete basis sets. 

It is the purpose of this paper to show that the S-1/2 expansion can be transformed 
to make a convergent series. The consequence of this is that the conclusions arrived 
at by Brown and Roby [5] concerning the validity of the CNDO and NDDO 
approaches can be re-examined in a formally correct framework. Although their 
conclusions are not substantially altered, some recent attempts by Chandrasekhar 
et al. [13] to produce integral scaling factors from the Brown and Roby equations 
need to be completely revised. 

2. The S-Expansion Technique 

Let X, a row vector be a non-orthogonal normalized set of atomic orbital functions 
with overlap matrix A, 

= f X*X dr = (X ] X) (9) A 
d 
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The  basis X is t ransformed into a symmetrically orthogonalized one, 

r = xA -~/2. (10) 

W e  can assume that S wil l  form a convergent  power  series and  write 

A -1/2 = (1 + S )  -1/2 

= 1 - �89 + }S  ~ . . -  (11) 

with the intention of  considering approximat ions  to A-~/2 resulting f rom truncat ion 
of  the series in S. Before doing this the convergence propert ies  need to be examined. 

I f  Uis  a matr ix  which diagonalizes S so that  S = U A U - 1  with A a diagonal  matrix 
whose diagonal  elements are the eigenvalues ~ of  S, then obviously S ~ -- UA'~U-i  
and a power  series in S will only converge if p = max {I ;hi} < 1. This condit ion is 
not  met  in general for molecular  basis sets. 

However ,  the overlap matrix (A) is Hermi t ian  and positive definite which follows 
because for  any 

A = ~ c,X~ (12) 
i 

~J 

= c Y x l x > c  = < x c l x c >  >1 o. ( 1 3 )  

In order to get a convergent  series (11) it is necessary to factorize (1 + UAU-1)-1 /2  
so that  max{Ibm[} < 1, which can be achieved by subtracting a constant  diagonal  
matr ix ,  X = x l  f rom S so that  

(1 + U A U - 1 )  -1/2 = (1 + U A U  -1 - X + X )  -1~2 

with X a constant  matrix having positive elements x. Then 

(1 + U A U - 1 )  -1/2 -.= (1 + X + U A U  -1 - U U - 1 X )  -112 

= (1 + x + u ( A  - x ) u - 1 )  -1,~ 

= (1 + X)-1/2(1 + (1 + X ) - ~ v ( a  - X ) U - 1 )  -1/2 

= (1 + X)-~/2[ l  + (1 + X ) - ~ ( S -  X)] -~/2 (14) 

The  constant  matr ix  is chosen so that  (p - x)/(1 + x) < 1 and also so that if 
pm = min{A,} then ](Pm -- X)/(1 + X)[ < 1. Since A is positive definite the smallest 
eigenvalue of  S is greater than - 1 and bo th  conditions can be satisfied. Figure 1 
shows a sketch of  p and Iota[ versus x. The  op t imum choice of  x is obviously given 
by, 

I p ~  - x____J = p - x (15) 
l + x  l + x  

so that  

x = ~ p + p~  0 6 )  
2 
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Fig. 1. G r a p h s  o f  y = (p - x)/(1 + x ) , c u r v e  B, and  y = ] ( p ~ -  x)]/(1 + x), curve  A, versus  x 

for  the c a s e p  = 2 a n d 0 ~  = - � 8 9  

Equation (14) can thus be expanded in the convergent power series of (1 + X) -1 
( S -  X), 

(1 + S) -~/~ = (1 + X)-~'~[1 - ~((1 + X } - ~ ( S -  X}) 

+ ~([1 + X } - I { S -  j(})2.. "l. (17) 

In order to simplify the following discussion we put 

= (1 + X)-~(S- X) (18) 

with the elements of $ = ~ j .  This expansion will now be used to investigate how 
integrals in a non-orthogonal atomic basis are related to those in an orthogonal 
basis, and which integrals become small after the transformation, and hence can 
be neglected. 

3. The S-Expansion Technique and NDO Approximations 

To consider applications of (17) to the examination of neglect of differential overlap 
approximations it is convenient to partition the molecular Hamiltonian in the 
manner discussed by Brown and Roby [5]. A partitioning of the core Hamiltonian 
matrix into one-centre and two-centre terms is used: 

H =  Hlc + H 2c, (19) 
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the elements of  H 1~ obeying the condition 

Hu~ = 0 

unless X,, X~ are orbitals on the same centre, while for those of  H 2~ 

H ~  = 0 

unless X., and xv are on different centres. For the two-electron repulsion terms of 
the Hamiltonian matrix it is useful to split them into one-centre and many-centre 
parts, 

G = G lc + G me (20) 

with 

G~ = 0 

for X~ and x~ on different centres, and 

A 

G~$ = ~ PAa[(t~v I ha) - �89 I ~v)] (21) 
h a  

for Xu and X~ on the same atom A. The summation is taken over all orbitals xx and 
Xa on A. G m~ can be further broken up into two, three and four-centre terms: 

G m~ = G ~  + G ~  + G.~ + G~% A + G.~g + G ~  (22) 

As an example the matrix G ~  contains all elements involving repulsion integrals 
(/zv I ha) with X. and x~ both on atom A, x~ and Xa both on atom B, for all A and B 
except A = B, so that in full the elements of  G~" are: 

B B 

(G~)~,v = ~ ~ Pa~(l~V ] )ur). (23) 
h a 

for X. and X~ on the same centre A, different from B, and 

A A 

,g ff 

for X, and X~ on different centres, A and B, respectively. 

The importance of the various integrals neglected in approximate differential over- 
lap methods can be assessed by considering only valence orbitals and then individu- 
ally examining the elements of  the Hamiltonian matrix. When a basis set which is 
Schmidt orthogonalized on each centre is subjected to a symmetric orthogonaliza- 
tion as in (10) matrix elements of  one-electron operators are transformed so that 

aM = A- 1/2MA- 1/z (24) 

Substituting the binomial expansion (17) and (18) for A-~/2 to the second order in 
$ into (24) gives 

aM = (1 + X)-~[1 - �89 + ~$2]M[1 - �89 + _~2] 

= (1 + X ) - ~ [ M  - �89 + ~ M }  + �88 + ~ M ~  + 3~2M} 

+ 0 (~ )1 .  (25) 
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Expanding this out into individual elements, yields 

o a ~ t t  

6 h ~ / t  a 

+ �88 ~ ~ Ma,.q3.a~,,~, + O(~ a) (26) 
h q : a  a 

(1 + x)XMA~ = Mu~(1 -- q3,,) - �89 ~,  [M, aq3a~ + Mavq3,a] 
hT~lt,V 

3 0432 + ~ ~, M.~[% + .el 

B C A  

o- 

A 

A-'#v.l~ a 

b o t h  on  
B C A  

+ �88 ~ ~,, Ma~q3ua~o~ + O(~ a) (27) 
A ~ a  a 

B C A  

where ~ means that the summation is to be carried out over all orbitals on atoms 
other than A. and 

(1 + x) XM~ = M,a(1 - ~..)  - :q3~x[Max + 
C ~ A  C C B  

a C A  a r  

+ �88 ~ {~-[Mx. + 

o n  B 

a \ ~ # A  cor  

b o t h  o n  13 

+ � 8 8  ~ M  . . . .  V..fl3.oa + O(~ a) (281 
a r o C a  

A o n I y  

where ~ means the summation only goes over orbitals on A. 

In these expressions the Mulliken approximation [14] for a one-electron operator 

<.~lf*la~> = S~a/2tMaa + MBn] (29) 

has been invoked to eliminate terms which become of O(~ a) after its application. 
Subscripts are used in the last term of (28) to emphasize that the term is only included 
if both o~ and e are on the same atom. Expressions (26-28) apply directly to the 
calculation of the following integrals which are used in ZDO approaches 

~,. = <t,~l - �89 + v~ + ~ v~IF,~> (30) 
B ~ . A  
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where VA is the potential due to the nucleus and inner shells of atom A, 

~.~ = <~AI~ VBIvA>, (31) 
B 

/3,A~ = (/~AI -- �89 V2 + VA + VBIAB), (32) 

and to the charge distributions aO~2, ~ô a__uv and aoaB..,a which arise when the electron 
repulsion integrals are written 

~(/zv ] )Ur) = (~f2uv ] ~f2~) (33) 

Equations (26-28) reinforce the conclusions of Brown and Roby [5], concerning 
core integrals, that 

~u ~ % (34) 

aBu~ N fl.~ (35) 

Further consideration of the electron repulsion integrals requires products of the 
expressions (26-28) which are then simplified using the Mulliken approximation, 
and by recognizing that (/~A/~A ] AB~B) ~ O ( S )  x (/~AI~A ] aB~) when AB r ~B. In 
the present instance this is more complicated than in Brown and Roby's treatment 
since there is no longer equality between the elements (~,~) appearing in the S - ~/2 
expansion and the overlap (S,~) from the Mulliken approximation, but they are still 

GAB, of the same order of magnitude. In particular, terms in integrals belonging to AB 
AB AB GAB GAC and GcD do not cancel identically to second order in overlap so that for AB 

1 (1 + x) 2 a(~avB [ AAeB) = a[S.~Sa, - q3a~S.. - q3u~Sa, + ~3.~q3a,][(># I aa) 

+ (vv ] aa) + (tzlz I ecr ) + (vv I~e)] (36) 

and there are terms identical in form for GA, B and aB AC GCD. However, the multiplying 
factor in (36) will be of the order of ~8 for all circumstances, so that integrals of 

A B  A B  GOD, G~c and GA BAB may be neglected to the second order in overlap. 

The remaining three-centre terms G ~  give 

(1 + x) ~ ~(~v~  I aB~o) = a [ s ~  - ~ ] [ ( ~  I a~) + ( ~  I ~)]  

A 

a 

+ [ � 8 8  ~ 
D @ A , B , C  

+ ~ { [ ~  - � 8 8  1 ~ )  
d 

+ [ ~  - � 88  I ~ )  
- -  1 + [ �88 ~ s ~ o ~ -  � 8 8  lad)} 

c only 

+ �88 I~) - �89 ~ ~o(I - %.)(~ I c~) 
c 

B only 

- �89 ~ q3~(1 - Vuu)(/~v l bA). (37) 
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While this is not of O(~3), under some circumstances it can be quite small. When 
the S matrix itself gives a convergent expansion the first and second terms, and all 
other terms containing the diagonal elements q3,,, disappear, and the summations 
over a and b simplify to the expressions given by Brown and Roby [5]. In this case 
the terms inside the summations over orbitals on A and B approximately cancel and 
are multiplied by a small factor �88 the final summations over c and b do not have 
cancellations but are expected to be small. As modifications to the S matrix become 
important and x, Eq. (16), becomes larger the overall contributions to (37) remain 
of O(~2). The first term enters with this order since 

1 
= - -  Sa~ (38) 

~ 1 + x 

...�89176 - ~3~o1 = } s ~  (1 + x) &~ = �89 

which = O(~It 2) if the factor (1 + x) 2 on the 1.h.s. is included. Again, because of 
cancellation or multiplication by the factor x/(1 + x) 2, the terms in the summation 
over a and d will be small. Other terms are clearly of O(~2). 

The effect of orthogonalization on the remaining two-centre integrals G ~  is given 
by 

(1 + x) 2 ~(~AvA ] A~(rB) = (1 + 3X) (~v [ h~) 
I + X  

O C B  

+ ] E E {[3q3acq3c~ - 2~aoSc~](/zv lea)  
c 

+ [3~a~q3co - 2q3~Sa~](t zv I aa) 

CCA 

c 

+ [3%~%v - 2 % ~ s . c ] ( ~  I ~ )  

+ [ 2 % A 3 .  - 2%~s.o - 2 % o s . ]  

x (ccl  a~)}. (40) 

The importance of modifications to the S matrix become evident in (40) where the 
change to the integral on orthogonalization depends on the parameter x, firstly 
through the contribution of the leading term (/~v [ A(r) which decreases as x increases 
and secondly through the remaining terms which show a more complicated depend- 
ence. This can be examined by substituting (38) into (40) to give 

(1 + x) 2 a(t~AvA [ ABas) 

. . [I  + 3x\ ~ f . s ~ s ~  
= (/zv I a c t ) ~ )  + } z..,r /,(1 + x)  z [(1 - 2x)(t~v I hh) + (1 - 2x) 

(/~v [ a a -  2) (1 + 2x)(/zv [ co)] + 
(1 + x) 2 

[(1 - 2x)(m, ] a,,) + (1 - 2x)(,,,, I a,,) - 2(1 + 2x)(ccl ;~,~)];. (41) 
) 
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The terms within the summation which do not depend on x approximately cancel, 
and the terms involving x are of  order ~a, and become less important as x becomes 
larger, but they all contribute with the same sign. 

Two-centre repulsion integrals are a special case of  (40) and if we write 7,a for 
(/z/z ] hA) then they are given by, 

(1 + x) 2 a(/~A/~A I ABhB) = (1 + 2q3.~. -- 2~3..)7.a 

A 

a 

B 
3 2 1 t + Z [(lV.b - ~V.~S .~ ) r .~  - (~V.~S .~  - ~ V  ~'...___.~,~," 

C ~ A , B  

+I; 
o 

1 
[ ( ; ~ [ ~ 2  e __ _~04~hcShc)~lg h __ (~043AeSh  e __ .~043hc)~1~ e l  2 

+ 3 2  1 

- ~q3.~)Ta~ ] (42) - ( � 8 9  1 

Using (38) we can put this in the more useful form 

(1 + x)  2 a(/x/. [ hA) = (_1 + 4x  + 5x2~. 
(1 + x )  ~ )(/q~lhh)+ 4(1 + x) 2 

• {~S~a[(1-2x)7.a-( l+2x)~.a]  

B 

+ Z Su2b[(1 -- 2x)~.a -- (1 + 2x)TM 

C ~ A , B  + Z  
c 

(S~c[(1 - 2x)yua - (1 + 2x)7.c1 

+ S~c[(1 - 2x)7.~ - (1 + 2x)Ta~]))? 
) 

( 4 3 )  

When x = 0 this converts to Brown and Roby's  equation (52), and as they deduced 
A B  .AB might be expected to be less than 7.a. I f  x # 0 this conclusion should be 

unchanged. 

Differences between the values of  one-centre exchange integrals and Coulomb 
repulsion integrals in the orthogonal and non-orthogonal bases are small, provided 
x is kept small, and probably remain so even as x becomes larger, although the 
precise behaviour in these circumstances is not obvious. 
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(1 + xy "0..... I ,'.,'.)= {1 + B ~ .  
3. 

B~A I + ~ [~%, ~ ~ 
- ~3.~s~]  + ~%. - 2V.. (#~ I ~ )  

ACv 

+ 

(1 + x )  2 3.(/~.vA I #AVA) = [1 

B~A 
..~.. ~ 1 2 _ _  

A ~ t t  

B ~ A  

[�88 - kVa~S3.~](F/~ [ hA) (44 t 
A~v 

- 2~3..](/~v l /~v) 
B # A  

3. 

B ~ A  

3. 

+ [�88 - �89 [w)} (45) 

4. Conclusions 

The conclusions resulting from this study are very similar to those made by Brown 
and Roby [5] but in the present case they are formally correct because of the con- 
vergent nature of the expansion used. As previously concluded the assumptions 

A~. ~ ~. (46) 

a/~.3. ~/3.~ (47) 

are not justified. But, the present work does confirm that the integral assumptions 

A(t~AVB ] hcao) ~ 0, A # B, C # D (48) 

and 

(49) 

do have some justification. The exceptions to this statement are the integrals con- 
tained in GB%A (Eq. (37)) which can still have terms of O(~ 2) contributing to the 
integral over the orthogonal basis. The problem created for the NDDO method by 
three-centre integrals has already been recognized by Brown and Burton [15] who 
have introduced what they call a balanced approximate SCF MO theory which 
includes, as well as the NDDO two-electron integrals, all interactions of the form 

G #  = (~ .~ .  ] 4~o).  

They showed that including these terms in an otherwise NDDO calculation led to 
a big improvement in the agreement of the calculated MO energies of FCN with 
those from a near Hartree-Fock limit ab ini t io calculation. 
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The modification of the S-expansion technique described here demonstrates that 
neglect of differential overlap methods can be derived and justified in a basis of 
orthogonal atomic orbitals, and confirms the following general conclusions [5]: 

1) The zero-differential-overlap assumptions for repulsion integrals apply in an 
orthogonal basis, and non-zero integrals may be evaluated using normal rather 
than orthogonal orbitals. 

2) I f  core elements are evaluated theoretically in a non-orthogonal basis to form 
the core matrix H it is necessary, because of (34) and (35) to transform H to a 
symmetrically orthogonalized basis, 

~'H = S -  1 / 2 H S -  112 

3) Of the neglect of differential overlap approximations, the CNDO and INDO 
methods do not receive any justification because omission of two-centre integrals 
of the form (IZAVA [ ABhB) and also in the former method, of some one-centre 
integrals, cannot be supported. The NDDO method, however, provided that the 
core elements have been calculated correctly, is correct to at best the second 
order in overlap, so that 

F r~n'~ = ~'F + 0 ( $ 3 ) .  

Diatomic molecules, which have no three-centre integrals, and in addition have 
overlap matrices forming convergent series in powers of S without adjustment, are 
the most favourable cases. Tables 1 and 2 present the overlap matrices for N2 and 
HF, calculated from Schmidt orthogonalized single term Slater type orbitals with 
the following exponents 

2SN= 1.95, 2pN= 1.95, 2 S r = 2 . 6 ,  2pF=2-6 ,  l s r t =  1.0 

Direct diagonalization shows the largest eigenvalues as N2 (0.820) and HF (0.558), 
thus the expansion (11) converges although in the case of  N2 this must be slow. 

Errors rise as the number of ligands attached to a centre increase, more orbitals 

Table 1. Overlap matrix for valence orbitals of N2. Slater type orbitals with expo- 
nents 1.95, internuclear distance = 109.4 pm 

2s(N1) 2p,(N1) 2px(N1) 2pu(N1) 2s(N2) 2p,(N2) 2px(N2) 2pu(N2) 

1.0 0 0 0 0.45 0.43 0 0 
0 1.0 0 0 -0.43 -0.32 0 0 
0 0 1.0 0 0 0 0.28 0 
0 0 0 1.0 0 0 0 0.28 
0.45 - 0.43 0 0 1.0 0 0 0 
0.43 - 0.32 0 0 0 1.0 0 0 
0 0 0.28 0 0 0 1.0 0 
0 0 0 0.28 0 0 0 1.0 



NDO Approximations in Terms of a Power Series Expansion in S 143 

2s(F) 2p(F) ls(H) 

1.0 0 0.47 
0 1.0 -0.30 
0.47 --0.30 1.0 

Table 2. Overlap matrix for valence orbitals of HF. Slater type 
orbitals with exponents of 2.6for fluorine and 1.0 for hydrogen, 
internuclear distance = 91.7 pm 

per centre are included, and the overlap between participating orbitals increases, 
so that 

or 

~ G  = G NDDO 

~(~Av. I ~oa~) = ~^.~o.(t~AvA I ~oao) (50) 

becomes more approximate. Already we have seen that three-centre integrals 
involving interactions between a one-centre distribution and a two-centre distribu- 
tion may not satisfy (50) to 0(~2). Equations (42-45) show also that two-centre 
Coulomb and one-centre Coulomb and exchange integrals may also fail to satisfy 
(50) to O(~2). Two approaches have been made to overcome this latter problem. 
Roby and Sinano~lu [16] used a scheme which decreased all two-centre repulsion 
integrals and increased all one-centre repulsions by amounts between 9-14%. A 
more promising approach has been used by Chandrasekhar et al. [13] who have 
calculated the actual values of  the transformed integrals correct to second order in 
overlap using expressions corresponding to Eqs. (42) and (44). Unfortunately, they 
used expressions derived from an unmodified S matrix which, as an examination 
of (41-45) shows, will give a result considerably in error especially in the ions they 
studied, PO~-,  SO~-, and C1Of where the spectral radius of the S matrix is high. 
Despite this Chandrasekhar et al. reported a good agreement with ab initio calcula- 
tions. Considering this success use of the corrected expressions reported here should 
be investigated. 

The foregoing analysis gives a rigorous examination of N D O  methods in the frame- 
work of their relationship to calculations in an orthogonalized basis and the S 
expansion technique. It  dear ly shows that the CNDO and INDO methods and 
their modifications cannot be justified by this technique. N D D O  methods have some 
justification. The anaIysis shows strengths and weaknesses of  these and suggests 
areas where improvements can be sought. 
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